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Chetayev's instability theorem for conservative systems is generalized to 
the case of a non-isolated equilibrium position. On the assumption that 
the potential energy is not a minimum at the equilibrium position in 
question, consideration is given to the Lebesgue measure of invariant 
sets in the intersection of the domain in which the energy integral is 
negative and a small neighbourhood of the equilibrium position. 

Chetayev's paper /l/ played a key role in establishing a series of new cases in which 
the inverse of the celebrated Lagrange-Dirichlet Theorem holds (see surveys /2, 3/, Chap. III). 
A convincing indicator to that effect is provided, in particular, by the results obtained in 
/4, 51, which utilize Chetayev's idea of constructing an auxiliary vector field possessing 
certain properties with regard to the potential of the forces of the system. At the same 
time, it has been shown /6/ that the condition according to which the function II(q) has no 
critical points in the domain o,= (qES,== {qs R", IIqU<e): II (qj<O), where II(q) is the 
potential energy of the system, which is commonly assumed both in Chetayev's Theorem and in 
most further research in that area, is not essential. In many cases /6/ it may be dropped, 
provided certain restrictions are imposed on the structure of the set of critical points of 

n (9) - As will be shown below, these restrictions may be lifted too. 
Consider a natural system with n degrees of freedom, representing it in Hamiltonian 

form 

q' = amap, p' = -awaq (1) 
H (q, p) = ‘IapTA (q) p + ff (q) = h = const (2) 

We shall assume that H (q,p)E &*(D C R$“), the quadratic form pTA (0) P is positive 
definite, the system of Eqs.(l) is in equilibrium at the point q =p = 0 and n (0) = 0. 

Theorem 1. Suppose that for as small a value of s>O(D I>S~) as desired the set oe = 
{s E .%: l-I (9) <O)l is not empty and OE ao,. Assume that a vector field f (q) E C’: s, + R” 
exists such that 

1) fT (q) arm c 0, vqf 0,; 

2) xT (; AOJ))!~_~X-;~~ (0) + (xTA (q)~&o>41xl12r VXE R”, O<e=const. 

Then the equilibrium position q =p = 0 of the system of Eqs.(l) is unstable. 

Proof. Since by assumption %# 0, the same is true of the set 

Q, = {(q, p) FZ se* = ((9, P) es RZn, II q 63 P II c ~1: H = h < 0) 

Consider the auxiliary function V = fTp. Its derivative along the vector field defined 
by the system of Eqs.(l) is 

V.=pT-& A(q)&- fT(q)~(pTA(q)p)-fT(q)~ (3) 

Noting that f (q)E C', A (q)E cz, so that the right-hand side of Eq.(3) is continuous, 
we express the latter in the neighbourhood of q =p =0 in the form 

vkzpT(+ A (4) j_ P -. -+ fT co) + P ( TA (q) P) k=o - fT (9) ;+ + 0 ( II P 11’) (4) 
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Using (4) and conditions 1 and 2 of the theorem, we can always choose a numbern(O< q<~f 

so small that 

v' 9 c1 II P II*, y ((I? P) E s?l* fl a, 0 < Cl <c (3 

cl = const 

Suppose that q = p =0 is a stable position of equilibrium. Then t: (PO, P,) E a* n a!, 
where 6 is sufficiently small, there exists a positive semitrajectory F(q*, Pi31 passing 

through a point (q,, p,,)Esb* 0 n, such that y’(qo. p&C s+,* ;l %. Now choose a point (qo** 
po*)Esa* n 9, so that 

This 

PO * be 

saf i-l 4 
once from 
chosen so 

v (q (t)> P 0)) It=. = fT (9) p ILO = I* (no*) PO* = hl > 0 

is equivalent to the requirement that the scalar product of the vectors f (so*) and 
positive in fz". Since the fact that the point (qo*,Po8) belongs to the domain 
imposes no restriction on the direction of the vector po* in R" (as follows at 

the structure of the energy integral H(q,p) = h), the direction may-always be 
that the constant h, is positive. a. 

Since the solution (q* (t), p* (t))' of (1) corresponding to the semitrajectory V+ (q,*, PO') 
satisfies the estimate (5), it follows that 

V(P)> P (q**, PO*) = h, > 0 

and so the point p = 0 at which V vanishes is not in 7. Hence it follows that 11 P(F)~/~# 0. 
Now, taking into account that 7 is a compact set, so that the function II Pm 11” attains 
its extremal values there, we have 

II p (~)I/* >, c, > 0, c* = const 

Using this estimate we deduce from (5) that 

V' (q* (t)? p* (t)) > clc, = c5 > 0, c3 = const 

On the other hand, since P(q,p)E cl&%,*) and y'CCq*, we have 

P (q* (ft, P* (0) < hB* 0 <he = eonst 

Comparing inequalities (6) and (7), we arrive at a contradiction, whence it follows 
the equilibrium position is indeed unstable, thus proving Theorem 1. 

CorolZary. Suppose that for small s>O(D3S,)o~=+~,OEat0* and there exists a 
vector field f(q) E C': s, + R", f(O).= 0, such that condition 1 of Theorem 1 is satisfied 
and, in addition, 

x* (W@qA (q)) 194 >~llxll? Vx= R", O<c=const 

Then the equilibrium position q =p = 0 of system (1) is unstable. 
The corollary, which is a stronger version of Chetayev's Theorem /l/, since the inequality 

in condition 1 need not be strict, may be proved along the same lines as above. In this 
situation, however, it is more convenient to consider the Chetayev function V = -Hf*p, whose 
derivative along the vector field defined by system (1) may be expressed, using the previous 
arguments, in the form 

(6) 

(7) 

that 

li’=---H(PT (+(q)jI,=,P-fr+ -o(llPU~)j (8) 

In the domain 

A = {(q,p)E s,*: H = h< 0, f*p > 0) 

where V>O and e30 is sufficiently small, an examination of the assumptions of the 
corollary shows that the right-hand side of (8) is positive. 
v' may vanish, V will also vanish. 

At p =O, where the derivative 
Thus, if we henceforth confine our attention to trajec- 

toriesof system (1) that pass through A and observe that 

v = 0, v(q, PI E aA*fl se*; v > 0, v’ > 0, v (q, PI E A 

then the truth of the corollary follows from Chetayev's instability Theorem (/3/, p.19). 

Remarks. 1. Although Chetayev, in his paper ,111,. in fact considered a domain analogous 
to A, he actually postulated that v' be positive in the domain L$ defined above, which 
is larger than A and contains the latter as a proper subset. But if one requires only that 
I' be positive in A, the instability conclusion will also hold, as might have been shown 
above, assuming the truth of the non-strict inequality f*an/lj?lqo rather than the existence 
of the set of critical points in oe without any restrictions on its structure. The function 
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V proposed in Chetayev's paper enables him to do this. Thus, the proof of Chetayev's Theorem 
actually implies a stronger assertion than that reflected in its formulation. 

2. The assumption that LI (q, pl E Cg’fD c sl?, which guarantees the uniqueness of the 
solution, is not essential. Theorem 1 remains valid if H (4. P) = cql, as follows directly 

fxom the scheme of the proof. The condition H&,F)EC;~ may rather be evaluated in this 
connection as a consequence of Newton's determinacy principle, as usual in classical mechanics. 

3. Comparing the formulations of Theorem 1 and the Corollary, one cannot help noticing 
that Theorem 1. does not require the assumption f(O) =O, i.e., the vector field f (¶: may 
contain a canstant component. The possibility of a field structure f W with f (0) + 0 
is illustrated in the following example. 

Exam@ e . Consider a system with two degrees of freedom, whase Hamiltonian is define& by 

Since the potential energy l"i(q,,g,f of the system is not a minimum at q=o - an 
equilibrium position of the system (provided that p==O), it follows that 

a, = HeI> BB) E a, : Wi nn' + Pl'PS~ <O} + 0 

By the definition of we, *% < 0, Y (Q~, qr) E we. 
Defining the field f as the vector I =(Q,-$ I-C&, we obtain the equality 

f*aniaq = -77ga*-t3fr*gas .+ 9 (%i'-f- 43dI i- @V~B$ -I- sPP4*s) 

On this basis, noting that qIa < ql?, Y (Q~, qa) E we, so that i q1 i < 1% P in y, we get 
traI%Yq = - a&s t 0 (1 Q* I?f 

Thus, for sufficiently small E>O, 
fTLKi/aq < - Pz"+ y (511, 921 = we. 

Noting that condition 2 of theorem 1 is certainly satisfied here I we conclude that the 
equilibrium position q = p=o is unstable. 

Applying Poincar&'s Recurrence Theorem i/7/, p,4471, let us estimate the Lebesgue measure 
of the trajectories of system (11 that preserve the domain In, = GE n sqr in which, as seen 
in the proof of Theorem 1, inequality (51 holds. 

Theorem 2. Under the assumptions of Theorem 1, if the domain a, = ((q,P) E srl*: N(9) 
contains an invariant set M, then 

mes{M) = 0 

Proof. Suppose that Mets = p>O. Then, since the phase volume of system (11 is an 
invariant and ry! is a bounded set, it follows from Poincar&'s Theorem that almost all trajec- 
tories yc: M possess the recurrence property- Thus there exists a sequence (L} (m - 0, 1, 

2 1 , . . . such that 
JJ~G= WI ~~-$lq(~Wq0~Po) 8P(L, q,?Po~li= (91 

lIS,~POll~ v(q,,P,)EM\JG f@==O 

where 

Taking into consideration that the Cebesgue measure of the set 

a, = {(q,p)EE sn": H( 0, p = a} 

is zero, we also have 

nWLW'= (M\xf\e,l =mes(M) 

Integrating inequality (5) along trajectories YC (M\ x)$ we obtain 

atting (no, po)E M* in (111, we let m go to infinity. Then, by (91, we get 
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Comparing these relationships we conclude that for sufficiently large m inequality (11) is 
contradictory whenever (q,,p,,)E M*. Thus, in view of (lo), our assumption that the measure 
of M is positive is false. This completes the proof of Theorem 2. 

CorotZary. Almost all trajectories of system (1) that pass through the domain 8, 
intersect the sphere p\&*. 

Summarizing, we observe that the restrictions on the structure of the set of critical 
points of II(q) stipulated in /6/ were motivated by the need to prove the existence of a 
motion of system (1) for which the derivative Y' satisfies an inequality V>k>O, k = cod. 
As shown above, the inequality fr aniaq<O (together with the other conditions of Theorem 1 
and its.Corollary) is sufficient to guarantee the existence of such a motion, provided that 
initial data are chosen subject to the condition V(qo,pJ> 0. The reader will readily convince 
himself that this condition imposes no restrictions on the structure of the set of critical 
points of II(q). 

The author wishes to thank V.V. Rumyantsev and A.V. Karapetyan for their comments. 
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